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Abstract 
We show that one can study several sets of sequences or time-series in terms of an underlying 
evolution operator which can be learned with a deep learning network. We use the language of 
geospatial time series as this is a common application type but the series can be any sequence 
and the sequences can be in any collection (bag) - not just Euclidean space-time -- as we just 
need sequences labeled in some way and having properties consequent of this label (position in 
abstract space). This problem has been successfully tackled by deep learning in many ways 
and in many fields. The most advanced work is probably in Natural Language processing and 
transportation (ride-hailing). The second case with traffic and the number of people needing 
rides is a geospatial problem with significant constraints from spatial locality. As in many 
problems, the data here is typically space-time-stamped events but these can be converted into 
spatial time series by binning in space and time. 
 
Comparing deep learning for such time series with coupled ordinary differential equations used 
to describe multi-particle systems, motivates the introduction of an evolution operator that 
describes the time dependence of complex systems. With an appropriate training process, we 
interpret deep learning applied to spatial time series as a particular approach to finding the time 
evolution operator for the complex system giving rise to the spatial time series. Whimsically we 
view this training process as determining hidden variables that represent the theory (as in 
Newton’s laws) of the complex system. 
 
We formulate this problem in general and present an open-source package FFFFWNPF as a 
Jupyter notebook for training and inference using either recurrent neural networks or a variant of 
the transformer (multi-headed attention) approach. This assumes an outside data engineering 
step that can prepare data for ingest into FFFFWNPF.  
 
We present the approach and a comparison of transformer and LSTM networks for time series 
of COVID infection and fatality data from 314 cities as well as hydrology from 671 locations 
 
The paper concludes with a discussion of future applications including earthquake science, 
logistics (job scheduling), and epidemiology as well as other important neural networks  -- 
graphs, convolutional, convLSTM. We expect to use this technology with MLPerf datasets. We 
intend to understand how complex systems of different types (different membership linkages) 
are described by different types of deep learning operators. Geometric structure in space and 
multi-scale behavior in both time and space will be important. We anticipate that the current 
forecasting formulation is easily extended to sequence to sequence problems. 
 
  



1. Introduction 
There is increasing recognition of the importance of deep learning in data-driven discovery 
across a broad range of applications. In this paper, we study time series where the MLPerf [1], 
[2] working group led by Cisco technical leader Xinyuan Huang has recently highlighted many 
areas and available datasets [3]. Logistics, network intelligence, manufacturing, smart city, and 
ride-hailing [4] (transportation) are major Industry areas having important time series while 
medical data is often of this form. We note that similar technical approaches (recurrent neural 
nets and Transformers) are often used for both time series and “sequence to sequence 
mapping” as seen in the major voice and translation areas separately studied at MLPerf. We 
focus here on the analysis of time-dependent data for forecasting where approach can be 
illustrated by the examples below. There is a class presentation covering this material [5], [6], 
which extends an earlier technical report [7].  
 
We compare deep learning for such time series with coupled ordinary differential equations 
used to describe multi-particle systems, and this motivates the introduction of an evolution 
operator that describes the time dependence of any complex systems. With an appropriate 
training process, we interpret deep learning applied to spatial time series as a particular 
approach to finding the time evolution operator for the complex system giving rise to the spatial 
time series. Whimsically we view this training process as determining hidden variables that 
represent the theory (as in Newton’s laws) of the complex system. Below we analyze three 
examples focussing on what we term a spatial bag. These are problems consisting of a 
collection of points (thought of members in a space) which have the same dynamics but with 
different parameters and different initial conditions. The points in the bag have time series and 
static data which can be considered as specifying parameters allowing different evolution 
operators for each point. In the two methods presented here the static and dynamic data are 
treated in identical fashion with static data viewed as a time series with time-independent 
values. This is a common approach in the literature but I did not see it articulated definitively 
anywhere. We use it as it fits our view of parameterized operators which is not obtained from 
alternate methods that treat static data outside the LSTM or Transformer. 
 
We formulate this spatial bag problem in general and present an open-source package 
FFFFWNPF as a Jupyter notebook for training and inference using either recurrent neural 
networks or modified transformers using multi-headed attention at decoder stage and an LSTM 
for the encoder. This assumes an outside data engineering step [8], [9] that can prepare data for 
ingest into FFFFWNPF. The software is open source and available [10] but it needs more 
attention to clean API’s, further testing and documentation. The notebook is modified from that 
prepared by Google [11] for the original transformer [12], so you can easily see the nature of 
changes made. 
 
We motivate our approach in section 2 considering a study of Newton's laws for molecular 
dynamics and COVID-19  infection and fatality data from 314 cities (space points) using a well 
established LSTM approach [13]. In section 3, we describe the spatial bag and the Transformer 
model for it. Section 4 looks at LSTM and Transformer models for COVID-19 and a large 
hydrology dataset [14]–[18]. In this study the work is motivated by realistic applications but only 
uses them to study the technology. In later works we will apply these ideas to answer science 
questions. The final section has conclusions 
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2. Motivating Examples 
2.1 Deep Learning as a Particle Dynamics Integrator 

Fig. 1. The average error in position updates for 16 particles interacting with an LJ potential, The left 
figure is standard MD with error increasing for ∆t as 10, 40, or 100 times robust choice (0.001). On the 
right is the LSTM network with modest error up to t = 106 even for ∆t = 4000 times the robust MD choice. 
 
Molecular dynamics simulations rely on numerical integrators to solve Newton's equations of 
motion. Using a sufficiently small time step to avoid discretization errors, these integrators 
generate a trajectory of particle positions as solutions to the equations of motions. In  [19]–[21], 
the IU team introduces an integrator based on recurrent neural networks that is trained on 
trajectories generated using a traditional Verlet integrator and learns to propagate the dynamics 
of particles with timestep up to 4000 times larger compared to the Verlet timestep. As shown in 
fig. 1 (right) the error does not increase as one evolves the system for the surrogate while the 
standard integration in fig. 1 (left) has unacceptable errors even for time steps of just 10 times 
that used in an accurate simulation. The surrogate demonstrates a significant net speedup over 
Verlet of up to 32000 for few-particle (1 - 16) 3D systems and over a variety of force fields 
including the Lennard-Jones (LJ) potential.  
 
We often think of the laws of physics described by operators that evolve the system given 
sufficient initial conditions and in this language, we have shown how to represent Newton’s law 
operator by a recurrent network. We expect that the time dependence of many complex 
systems: Covid pandemics, Southern California earthquakes, traffic flow, security events can be 
described by deep learning operators that both capture the dynamics and allow predictions. In 
the covid example below for example one can learn an operator that depends on the 
demographics and social distancing approach for a given region. 
 
2.2 Deep Learning to describe Covid Daily Data 

 
Fig 2: Deep Learning fits to Covid case and death data from Feb. 1 to May 25, 2020, with predictions 2 
weeks out and showing a weekly structure. The data is the square-root of counts for individual counties 
normalized between 0 and 1. 
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There are extensive collections of daily data for the number of Covid reported cases and 
deaths. These can be described by epidemiological models plus empirical fits [22] but as 
proposed above and illustrated in fig. 2, we developed a deep learning model [23] that learned a 
Covid daily evolution operator from (initially) 110 separate time series of curated (by the 
University of Pittsburgh) data for different US cities. The time series were 100 days long and the 
model was a 2 layer LSTM recurrent network similar to that used to describe the evolution of 
molecular dynamics above. Additional features were learning from the demographics (fixed data 
for each city) as well as time-dependent data and by predicting ahead for two weeks with each 
series as shown in the figure. This capability is important in any application with multiple time 
scales. For example, in earthquake forecasting multiscale in time effects are critical and one 
might want to combine a general forecast for the next time step (days to months) with the 
probability of the big one happening in the next 10 years. For 37 of the 110 cities reliable 
empirical (not deep learning) fits are available to the case and death data up to April 15, 2020 
[22]. A single deep learning time evolution operator can describe these 37  separate datasets 
and smooth fitted data leads to very accurate deep learning descriptions shown in fig. 3. For 
both figs. 2 and 3, the data is divided into windows of size 5, 9, or 13, and cases and deaths 
were simultaneously trained together with demographic data. The later work in section 4 
increases the number of locations to 314 and links with time-dependent mobility and social 
distancing data[24]. 
 

 
Fig 3: Deep Learning Fits empirical Covid data descriptions with 37 separate results shown as summed 
over cities. The cases and death were learned together in time series for different locations 
 

3. General Formulation of Deep Learning for Time Series 
3.1 Spatial Bag Problem 
We now generalize the above to a spatial bag of time series shown in fig. 4, where we have a 
set of time series where the spatial distances (e.g. locality) between points is not important; 
rather they are differentiated by values of properties which can either be static (such as 
percentages of population with high blood pressure for Covid example above or minimum 
annual temperature for hydrology catchment studies) or dynamic (such as a local social 
distancing measure). In later papers we will discuss problems which combine the features of 
spatial bags and distance locality where convolutional networks (especially convLSTM) are 
clearly useful.  
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Fig 4: Illustration of a spatial bag with associated time sequences. t labels time and x location, The 
Seq2Seq and forecast modes are illustrated and the structure of input data and predictions. 
 
3.2 Using Transformers for Spatial Bags 
The deep learning methods use approaches that were largely originally developed for natural 

language processing. 
Recurrent Neural Networks 
RNN explicitly focus on 
sequences and pass them 
through a common network with 
pretty subtle features. RNN are 
designed to gather a history 
which allows the time 
dependence to be remembered 
Attention-based methods [25] 
are more modern and perhaps 
somewhat easier to understand 
as attention is a simple idea. 
 
NLP is basically a classification 
problem (look up tokens in a 
context sensitive dictionary) 
whereas (science) tends to be 
numerical and so it is not 
immediately obvious how to use 
attention in technical time series 

https://paperpile.com/c/zFDKfc/7nTc


and we describe one possible approach in this paper. There have been a few studies of 
transformer architectures for numerical time series such as [26]–[32] but there is not a large 
literature.  
 
Attention [12], [33] means that you “learn” structure from other related data and look for patterns 
using a simple “dot-product” mechanism discussed later matching structure of different 
sequences; there are other approaches to match patterns which is a good topic for future work. 
Here we use a simple attention mechanism in an initial decoder but use a recurrent net LSTM 
for the encoder as shown in fig. 5b). Such mixtures have been investigated and compared [34], 
[35]. We compare the two architectures shown in a) and b) of fig. 5; a pure LSTM used in sec. 2 
and a hybrid transformer 
 
Scaled Dot-Product Attention and the Vectors Q K V 

 
The basic item for LSTM and 
Transformer is the same; a space 
point with a time sequence with each 
time in the sequence having a set of 
static and dynamic values. In an 
LSTM the sequence is “hidden” and 
you have to unroll the recurrent 
network to see it. However in 
transformer the different time values 
in a sequence are treated directly 
and so each item contains W terms 
(W is size of time sequence), Each 
term is embedded in an input layer 
and then mapped by 3 different 
layers into vectors Q (query) K (key) 
V .  As shown in fig. 6, one matches 

terms i and j by calculating Q(i)KT(j) and ranking with a soft-max step. This multiplies the 
characteristic vector V(j) of this pattern and the total attention A(i) for item i, is calculated as a 
weighted sum over values V(j). There are several different attention “heads” (networks 
generating Q K V) in each step and the whole process is repeated in multiple encoder layers. 
The result of the encoder step is considered separately for each item (each time in a time 
sequence at a given location) and the embedded input of this layer is combined with the 
attention as input to the LSTM decode step. 
 
Choosing group of items over which Attention Calculated 
In natural language processing, you look for patterns among neighbouring sentences but for 
science time series you can have larger regions as spatial bags have no locality. This leads  to 
many choices as to the space over which attention is calculated as one can’t realistically 
consider all items simultaneously. Suppose we have Nloc locations; each with Nseq sequences of 
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length W. Then the space to be searched has size Nloc. Nseq . W which is too large. In COVID-19 
example Nloc= 314,  Nseq ~ 200 and W up to 13. In the hydrology example in sec. 5, Nloc= 671, 
Nseq ~ 7000 and W up to 270. The next subsection describes the 3 search strategies we have 
looked at in FFFFWNPF: and depicted in fig. 7. There is  

● Temporal search:  points in sequence for  fixed location 
● Spatial search: locations for a fixed position in sequence 
● Full search: complete location-sequence space 

One will need to sample items randomly as only a small fraction of space is looked at in one 
attention step whatever method used. Note that in all cases we used a batch size of 1 as the 
attention space was effectively the batch. Actually in the LSTM stage, the different locations in 
the attention space were considered separately and the attention search space became the 
batch. In the work reported here the attention space (and batch size) was set to Nloc but this is 
not required and would not work in some cases with large values of Nloc. Even in examples 
considered here, the search space can get so large that one needs to address memory size 
issues and we describe this in sec. 3.3. Note the encode step of the transformer is many matrix 
multiplications and gets excellent GPU performance and typically LSTM decoder would be a 
significant part of the compute time and so the addition of attention is not a major performance 
hurdle. 

Fig. 7: Three search strategies discussed in paper. N=NA is the number of items considered in 
attention search- each labelled by a location and starting time - and each a window of length W. 
W=5 in diagram. NA = NB = Nloc here. 
 
An epoch contains Nloc.Nseq sequences each of length W and consisting of static and dynamic 
variables characteristic of location. For an LSTM, you would have a batch which consists of NB ~ 
Nloc sequences. The number of batches in an epoch is approximately Nseq. For a transformer the 
batch is currently unwrapped as discussed above and used as the attention space. Memory use 
or compute issues could require a different strategy separately considering batch and attention 
space. 
 



Note the attention space choice implies different initial shuffling to form batches and also 
different prediction stage approaches. For spatial and temporal searches one can keep all 
locations at a particular time value together in both forming batches and in calculating 
prediction. For the full search the complete set of  Nloc.Nseq sequences must be shuffled. In 
practice we combined the spatial and temporal search and accumulated the results of these two 
attention searches. 
 
3.3 Comments on FFFFWNPF Implementation 
Sequence Memory Use: Suppose that one has  Nloc locations, Nseq sequences and time windows 
of length W. This requires memory of order NlocNseqW which for hydrology example exceeds 
CPU memory for W � 10. However the sequences are only needed at the time the sequence is 
being used in a batch and so we use “Virtual Windows” where the system is set up with just time 
values with predictions calculated for sequences that end at each time value. Then one forms 
the sequences inside the deep learning loop dynamically for each batch. This requires care to 
be efficient and needs custom Tensorflow training but works well with little overhead. Probably 
this approach should always be used for time series. 
 
Attention Search Memory Use: The full search requires matrices of size (NAW)2 and this can 
be too large to fit in the GPU memory. As W is chosen for a given scenario,  if this limit is seen, 
one essentially needs to reduce the number of locations (NA) and this is done (hidden from user) 
by breaking matrix into blocks inside the function calculating the scaled dot product attention. 
These blocks require tensor slicing which is a little tricky as sliced tensors cannot be assigned in 
current tensorflow but appending blocks to a list and using concat achieves this goal. This 
approach was used for larger values of W for models that used  the mechanism of fig. 7c). In 
future work, we can of course look at parallelism to address both memory use and performance. 
For W=120 for example, each epoch takes over an hour to calculate on Colab. 
 
Deep Learning Approach: All these results used Tensorflow and Jupyter notebooks but they 
can surely use PyTorch or other frameworks. The simplest LSTM can be done with the basic 
sequential Keras model with a succession of layers. The Transformer has a more complex 
structure that needs Tensorflow’s custom training. We designed a custom monitor that 
checkpointed (using Tensorflow’s standard mechanism) weights and monitored the variation of 
loss with increasing epoch number. Large increases in loss were rolled back during the training 
and at the end of the training, the best checkpointed result was used. The number of rollbacks 
increased at end of run when improvement was anyway very small 
 
Real-Time Issues: Often time-series are observed in real-time and need to be responded to 
with low latency requiring inference to execute at the edge. This was not relevant for examples 
considered here with daily data. However these methods need to be reviewed for real-time 
inference scenarios when the large search space that can be used by the transformer can 
significantly increase prediction time latency. 
 
Structure of workflow: We can divide data processing for the type of problem considered here 
into five stages: pre-notebook; specialized notebook input; generic data pre-processing; training; 
visualization. We give details of five steps below 



1) The pre-notebook data engineering performs actions specific to a particular domain as, 
for example, in forming binned time series from recorded earthquake events. 

2) This stage prepares data for the notebook which reads the data (typically csv files)  into 
a set of numpy arrays. This includes dynamic and static properties as well as metadata 
such property and location names.  

3) In the important third stage, the notebook performs generic preparation tasks common to 
all datasets. This includes normalizing static and dynamic data by taking powers (square 
root, cube root, log to reduce standard deviation/mean) and linear transformations so 
values lie between 0 and 1. Also one must generate sequences (or prepare the virtual 
sequences described above under sequence memory use) and generate predictions 
associated with each sequence final time value. The predictions include futures which for 
COVID-19 use cases was for two weeks ahead. These cannot be found for sequences 
whose endpoint is within two weeks of the final data point; those points are set to NaN. 
In general the method accommodates any missing data for predictions but not for the 
input sequences where all data must be present. The generic input processing includes 
adding of positional space and time encoding for both LSTM and Transformer. We use 
simple linear indices for both space and time supplemented by periodic time encoding 
which is weekly for the COVID-19 data but annual for hydrology. This periodic structure 
corresponds to series such as (cosθ, sinθ) where θ runs from 0 to 2π over the period 
length. Note this seems extravagant but it is not and performance of the network is not 
significantly impacted by adding either these encoding or by the extra future variables.  

4) The next stage is a custom Tensorflow training where we must of course design the 
network from a collection of class instances. It is also set up with a monitor that controls 
the backup and restores the weights if the optimizer sends the fit into left field and the 
loss is significantly increased. We must set the parameters to control fit such as the 
search space for the transformer and the usual hyperparameters including number and 
size of layers, dropout, epoch, batch, and validation set, The training code must 
generate the sequences every batch if virtual windows are used. The long Tensorflow 
training runs ( up to over an hour per epoch) sometimes fail for Colab system glitches 
and jobs are often set up to restart from the backups. Further the weight architecture is 
independent of window size W, so large window runs W � 60 can be initialized with 
results of faster runs with smaller window size -- typically choosing a stage which was 
not fully converged but had a loss that was perhaps 30% above the final value. We use 
a simple custom loss function which certainly needs to recognize any missing prediction 
data designated by NaN in value. This is easy to test on and as loss function is additive 
over predictions it is sufficient to just skip over such points in calculations in the custom 
loss function. 

5) The last notebook activity is the many post fit visualization and analysis steps where 
care is needed to generate accurate efficient predictions. 

 
4.  Application to Hydrology Problems 

 
This work was motivated by an NCAR summer school including a video lecture [36] describing 
the use of recurrent neural networks in hydrology. There is also a good review [37] of deep 
learning in Hydrology with 129 papers. Many of the 129 papers are based on the CAMELS 
dataset from NCAR [15] where we focus on one of the most sophisticated analyses by Kratzert 
[16], [18]. A summary of this is contained in the resource  [38] produced for a summer 
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undergraduate research project [39]. The CAMELS data has 671 easily used locations 
(catchments) where 6 observables (rainfall, runoff, etc.) are defined on each location for 20 
years. As well as this dynamic data there are 27 static variables for each location. The goal is to 
build a single model describing these 671 locations. This can be posed in many ways with 
different input and output choices. It can also be formulated as a sequence to sequence model 
or as a sequence to forecast model (as Covid and Kratzert did). The loss function can be MSE 
or similar or more subtly the Nash–Sutcliffe efficiency NSE normalized by the measured 
standard deviation.  
 
In this paper, we are not aiming at science but rather a technology evaluation of LSTM and the 
hybrid transformer. So we asked how well these models described the full dataset rather than 
using half the dataset to predict the other half as was done in [16], [18]. We looked at the 671 
locations and 7031 daily data and windows W from 5 to 120. We did not see any advantages of 
large windows for the CAMELS dataset and present results for W=25. Interestingly the 
hydrology analysis preferred the spatial and temporal search strategies, (a) and b) in fig. 7, 
while COVID-19 analysis hybrid transformer analysis preferred the full search, c) in fig. 7. In 
both cases, the hybrid transformer obtained a final loss MSE that was 20% lower than the 
LSTM. Further, we found 2 Encoder layers gave good answers with quick convergence and 
either 4 (usual choice) or 8 heads per layer were sound. We explored different choices of the 
network embedding for Q K V and input data but a simple single layer with SELU activation for 
each embedding worked well. The internal representation of the space time points used 128 
bits. However this hyperparameter search was not thorough. 
 
The 27 static variables p_mean, pet_mean, aridity, p_seasonality, frac_snow_daily, 
high_prec_freq, high_prec_dur, low_prec_freq, low_prec_dur, elev_mean, slope_mean, 
area_gages2, forest_frac, lai_max, lai_diff, gvf_max, gvf_diff, soil_depth_pelletier, 
soil_depth_statsgo, soil_porosity, soil_conductivity, max_water_content, sand_frac, silt_frac, 
clay_frac, carb_rocks_frac, geol_permeability, were used with details given in [40]. The 6 
dynamic data with daily values are given in the table below 

Table: CAMELS data recorded daily 

 Dynamic attribute description unit 

 1 prcp(mm/day)  daily cumulative precipitation  mm/day 

 2  srad(W/m2)  average short-wave radiation  W/m2 

 3  tmax(C)  daily maximum air temperature  C 

 4  tmin(C)  daily minimum air temperature  C 

 5  vp(Pa)  vapor pressure  Pa 

 6  QObs(mm/d)  Discharge (cubic meters per day/ basin area)  mm/day 
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All this data was scaled between 0 and 1 while QObs and prcp had the cube root taken before 
this scaling to give greater representation quality by increasing scaled standard deviation. 
 
We investigated pure LSTM and hybrid transformer representations of the hydrology data with a 
variety of choices for window size W  and the different attention mechanisms described in 
section 3.2. We did not see significant dependence on W for values ≧ 21 and typical results are 
shown in fig. 8 for W = 25. There are a lot of fluctuations in the rainfall (prcp observable) making 
figure 8 a) left) hard to interpret and it is shown with an expanded scale in fig. 8 d).  As 
mentioned already, we obtained the best representations using the stratified search strategies 
across spatial or time directions, a) and b) in fig.7. 

 
Fig. 8(a) Results of the hybrid transformer for the first two daily time series prcp and 
srad,predicting one day in the future. This had 4 attention heads and 2 encoder layers and used 
search strategies a) and b). The left plot is expanded in fig. 8(d). The data in figures 8 a) to d) 
are the sum over locations of normalized data with cube root taken for prcp and QObs. 
 

 
Fig. 8(b) Results of the hybrid transformer for the middle two daily time series tmax and 
tmin,predicting one day in the future. This had 4 attention heads and 2 encoder layers and used 
search strategies a) and b) 



 
Fig. 8(a) Results of the hybrid transformer for the final two daily time series vp and QObs, 
predicting one day in the future. This had 4 attention heads and 2 encoder layers and used 
search strategies a) and b). Note a few measurements of QObs are missing and so summed 
data is not available for some days in the right plot. The fit does all 671 locations separately and 
so the region where the sum is not plotted is in fact well covered in the fit. 

 
Fig. 8(d) Expansion of the plot in fig. 8(a) left with x-axis expanded a factor of 6. We only record 
a third of the days as these illustrate what is going on quite well. The other 4 plots for remaining 
days are similar 
 
We also applied the hybrid transformer model to the COVID-19 data introduced in sec. 2. 
Typical results are shown in figure 9 that not only gives the summed totals as in figs.2, 3, 8 but 
also the particular description of data from New York City. Unlike the hydrology data, the full 
attention search fig. 7 c) gave the best description. 



 
Fig. 9(a) Results of the hybrid transformer for the COVID-19 infections (left) and fatalities (right) 
for a larger sample than that shown in fig. 2. The network had 4 attention heads and 2 encoder 
layers and used search strategy c) and a window size of 9. We show variation in predictions 
across different samplings of the attention search space. The figure shows sum over 
counties/cities  of normalized fitted data which is square root of individual counts 

 
Fig. 9(b) Results of the hybrid transformer for the COVID-19 infections (left) and fatalities (right) 
in New York City for the fit presented in fig.  9 a). This figure shows true counts 
 
5. Conclusions 
Above we have given examples of recurrent networks of the time evolution operator for complex 
systems and we are extending this to other areas. We see the mix of networks used above as a 
base approach applicable to many problems. Some examples need additional features: 
earthquakes (with fault lines) and transportation (road systems) need some variant of graph 
networks while mixtures of convolutional and recurrent networks (such as convLSTM) are used 
in weather and again earthquakes where the time series features can consist of images. Here 
we identify a new problem class -- spatial geometry where unlike spatial bag models, the spatial 
locality of the points in the problem is important 
 
We intend to study deep learning based time evolution operators for different complex systems 
and identify patterns as to which type of network describes which problem classes and the 



amount of data needed to get good results. Hopefully, we will also make research advances in 
the best networks to use; this is already seen in the move from recurrent networks to 
transformer and reformer architectures but this was largely motivated by sequence to sequence 
mapping and not by time series. We suggest more research in multiple or hierarchical time 
scales as this is needed in many applications.  
 
We intend to build a benchmark set of time series datasets and reference implementations as 
playing the same role for time series that ImageNet ILSRVC and AlexNet played for images. 
The different implementations establish best practice or get chosen for different application 
areas to either suggest an architecture or an initial network by transfer learning. Interesting 
complex systems that we can quickly look at, include virtual tissues [41], [42] and 
epidemiology[43] for Covid related applications. Such evolution operators are also seen[3] in 
finance, networking, security, monitoring of complex systems from Tokamaks[44] to operating 
systems, and environmental science.  
 
MLPerf benchmarks aim to quantitatively study the highest performance hardware and software 
systems. However, they also serve as examples of best practice and can help advance a field 
by documenting best practices. We intend to combine the open datasets and clean reference 
implementations available in MLPerf with documentation and tutorials which will allow MLPerf 
benchmarks to encourage the broad community to study these examples and use the ideas in 
other applications as well improving on our base reference implementations [45]. This work will 
be performed in the MLPerf Science Data which was just set up and is led by Fox and Hey 
(Chief Data Scientist at the Rutherford Appleton Laboratory). We will build multiple time series of 
the “MLPerf tutorial style” starting with initial projects from Indiana and identifying other 
examples from either the working group compilation [3] or identified in the meetings of MLPerf 
working groups. We will also look at areas including anomaly/failure detections, device metrics 
analysis, troubleshooting, and many IoT related data streams; examples have been compiled in 
cybersecurity and industrial operation categories by MLPerf [3].  
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Software 
A recent FFFFWNPF Google Colab notebook can be found at 
https://colab.research.google.com/drive/1dUwrxlUq8G8HHTzImJXmJ9qiUFabdIKf?usp=sharing. 
This defines hyperparameters and networks and is open source. The name FFFFWNPF 
remembers the name of the optimization package that I developed over 50 years ago and used 
in physics data analysis such as [46]. FFFF stands for Fee-fi-fo-fum [47] and WNPF is just Well 
Nigh Perfect Fit. The original FFFWNPF suffered the fate of computer cards and retired 
electronic stores past their glory days [48] at LBNL. This fate was entirely my fault as I was 
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thinking about other things; FFFWNPF was very grateful for example for the extensive work 
done on the CDC 6600 and 7600’s at LBNL. 
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