
DRAFT Deep Learning for Spatial Time Series

Geoffrey Fox, Indiana University 17 November 2020

Abstract
We show that one can study several sets of sequences or time-series in terms of an underlying
evolution operator which can be learned with a deep learning network. We use the language of
geospatial time series as this is a common application type but the series can be any sequence
and the sequences can be in any collection (bag) - not just Euclidean space-time -- as we just
need sequences labeled in some way and having properties consequent of this label (position in
abstract space). This problem has been successfully tackled by deep learning in many ways
and in many fields. The most advanced work is probably in Natural Language processing and
transportation (ride-hailing). The second case with traffic and the number of people needing
rides is a geospatial problem with significant constraints from spatial locality. As in many
problems, the data here is typically space-time-stamped events but these can be converted into
spatial time series by binning in space and time.

Comparing deep learning for such time series with coupled ordinary differential equations used
to describe multi-particle systems, motivates the introduction of an evolution operator that
describes the time dependence of complex systems. With an appropriate training process, we
interpret deep learning applied to spatial time series as a particular approach to finding the time
evolution operator for the complex system giving rise to the spatial time series. Whimsically we
view this training process as determining hidden variables that represent the theory (as in
Newton’s laws) of the complex system.

We formulate this problem in general and present an open-source package FFFFWNPF as a
Jupyter notebook for training and inference using either recurrent neural networks or a variant of
the transformer (multi-headed attention) approach. This assumes an outside data engineering
step that can prepare data for ingest into FFFFWNPF.

We present the approach and a comparison of transformer and LSTM networks for time series
of COVID infection and fatality data from 314 cities as well as hydrology from 671 locations

The paper concludes with a discussion of future applications including earthquake science,
logistics (job scheduling), and epidemiology as well as other important neural networks --
graphs, convolutional, convLSTM. We expect to use this technology with MLPerf datasets. We
intend to understand how complex systems of different types (different membership linkages)
are described by different types of deep learning operators. Geometric structure in space and
multi-scale behavior in both time and space will be important. We anticipate that the current
forecasting formulation is easily extended to sequence to sequence problems.

1. Introduction
There is increasing recognition of the importance of deep learning in data-driven discovery
across a broad range of applications. In this paper, we study time series where the MLPerf [1],
[2] working group led by Cisco technical leader Xinyuan Huang has recently highlighted many
areas and available datasets [3]. Logistics, network intelligence, manufacturing, smart city, and
ride-hailing [4] (transportation) are major Industry areas having important time series while
medical data is often of this form. We note that similar technical approaches (recurrent neural
nets and Transformers) are often used for both time series and “sequence to sequence
mapping” as seen in the major voice and translation areas separately studied at MLPerf. We
focus here on the analysis of time-dependent data for forecasting where approach can be
illustrated by the examples below. There is a class presentation covering this material [5], [6],
which extends an earlier technical report [7].

We compare deep learning for such time series with coupled ordinary differential equations
used to describe multi-particle systems, and this motivates the introduction of an evolution
operator that describes the time dependence of any complex systems. With an appropriate
training process, we interpret deep learning applied to spatial time series as a particular
approach to finding the time evolution operator for the complex system giving rise to the spatial
time series. Whimsically we view this training process as determining hidden variables that
represent the theory (as in Newton’s laws) of the complex system. Below we analyze three
examples focussing on what we term a spatial bag. These are problems consisting of a
collection of points (thought of members in a space) which have the same dynamics but with
different parameters and different initial conditions. The points in the bag have time series and
static data which can be considered as specifying parameters allowing different evolution
operators for each point. In the two methods presented here the static and dynamic data are
treated in identical fashion with static data viewed as a time series with time-independent
values. This is a common approach in the literature but I did not see it articulated definitively
anywhere. We use it as it fits our view of parameterized operators which is not obtained from
alternate methods that treat static data outside the LSTM or Transformer.

We formulate this spatial bag problem in general and present an open-source package
FFFFWNPF as a Jupyter notebook for training and inference using either recurrent neural
networks or modified transformers using multi-headed attention at decoder stage and an LSTM
for the encoder. This assumes an outside data engineering step [8], [9] that can prepare data for
ingest into FFFFWNPF. The software is open source and available [10] but it needs more
attention to clean API’s, further testing and documentation. The notebook is modified from that
prepared by Google [11] for the original transformer [12], so you can easily see the nature of
changes made.

We motivate our approach in section 2 considering a study of Newton's laws for molecular
dynamics and COVID-19 infection and fatality data from 314 cities (space points) using a well
established LSTM approach [13]. In section 3, we describe the spatial bag and the Transformer
model for it. Section 4 looks at LSTM and Transformer models for COVID-19 and a large
hydrology dataset [14]–[18]. In this study the work is motivated by realistic applications but only
uses them to study the technology. In later works we will apply these ideas to answer science
questions. The final section has conclusions

https://paperpile.com/c/zFDKfc/dQZNd+NfoaY
https://paperpile.com/c/zFDKfc/dQZNd+NfoaY
https://paperpile.com/c/zFDKfc/NCyiN
https://paperpile.com/c/zFDKfc/JhLhE
https://paperpile.com/c/zFDKfc/Af2Z+4PBr
https://paperpile.com/c/zFDKfc/a9ra
https://paperpile.com/c/zFDKfc/AyDV+ln3d
https://paperpile.com/c/zFDKfc/hAY2
https://paperpile.com/c/zFDKfc/SyJM
https://paperpile.com/c/zFDKfc/qWMd
https://paperpile.com/c/zFDKfc/lZIa
https://paperpile.com/c/zFDKfc/XqEo+WpA8+BQSp+TuAm+B3Kr

2. Motivating Examples
2.1 Deep Learning as a Particle Dynamics Integrator

Fig. 1. The average error in position updates for 16 particles interacting with an LJ potential, The left
figure is standard MD with error increasing for ∆t as 10, 40, or 100 times robust choice (0.001). On the
right is the LSTM network with modest error up to t = 106 even for ∆t = 4000 times the robust MD choice.

Molecular dynamics simulations rely on numerical integrators to solve Newton's equations of
motion. Using a sufficiently small time step to avoid discretization errors, these integrators
generate a trajectory of particle positions as solutions to the equations of motions. In [19]–[21],
the IU team introduces an integrator based on recurrent neural networks that is trained on
trajectories generated using a traditional Verlet integrator and learns to propagate the dynamics
of particles with timestep up to 4000 times larger compared to the Verlet timestep. As shown in
fig. 1 (right) the error does not increase as one evolves the system for the surrogate while the
standard integration in fig. 1 (left) has unacceptable errors even for time steps of just 10 times
that used in an accurate simulation. The surrogate demonstrates a significant net speedup over
Verlet of up to 32000 for few-particle (1 - 16) 3D systems and over a variety of force fields
including the Lennard-Jones (LJ) potential.

We often think of the laws of physics described by operators that evolve the system given
sufficient initial conditions and in this language, we have shown how to represent Newton’s law
operator by a recurrent network. We expect that the time dependence of many complex
systems: Covid pandemics, Southern California earthquakes, traffic flow, security events can be
described by deep learning operators that both capture the dynamics and allow predictions. In
the covid example below for example one can learn an operator that depends on the
demographics and social distancing approach for a given region.

2.2 Deep Learning to describe Covid Daily Data

Fig 2: Deep Learning fits to Covid case and death data from Feb. 1 to May 25, 2020, with predictions 2
weeks out and showing a weekly structure. The data is the square-root of counts for individual counties
normalized between 0 and 1.

https://paperpile.com/c/zFDKfc/Q37hG+43Jim+2AnL3

There are extensive collections of daily data for the number of Covid reported cases and
deaths. These can be described by epidemiological models plus empirical fits [22] but as
proposed above and illustrated in fig. 2, we developed a deep learning model [23] that learned a
Covid daily evolution operator from (initially) 110 separate time series of curated (by the
University of Pittsburgh) data for different US cities. The time series were 100 days long and the
model was a 2 layer LSTM recurrent network similar to that used to describe the evolution of
molecular dynamics above. Additional features were learning from the demographics (fixed data
for each city) as well as time-dependent data and by predicting ahead for two weeks with each
series as shown in the figure. This capability is important in any application with multiple time
scales. For example, in earthquake forecasting multiscale in time effects are critical and one
might want to combine a general forecast for the next time step (days to months) with the
probability of the big one happening in the next 10 years. For 37 of the 110 cities reliable
empirical (not deep learning) fits are available to the case and death data up to April 15, 2020
[22]. A single deep learning time evolution operator can describe these 37 separate datasets
and smooth fitted data leads to very accurate deep learning descriptions shown in fig. 3. For
both figs. 2 and 3, the data is divided into windows of size 5, 9, or 13, and cases and deaths
were simultaneously trained together with demographic data. The later work in section 4
increases the number of locations to 314 and links with time-dependent mobility and social
distancing data[24].

Fig 3: Deep Learning Fits empirical Covid data descriptions with 37 separate results shown as summed
over cities. The cases and death were learned together in time series for different locations

3. General Formulation of Deep Learning for Time Series
3.1 Spatial Bag Problem
We now generalize the above to a spatial bag of time series shown in fig. 4, where we have a
set of time series where the spatial distances (e.g. locality) between points is not important;
rather they are differentiated by values of properties which can either be static (such as
percentages of population with high blood pressure for Covid example above or minimum
annual temperature for hydrology catchment studies) or dynamic (such as a local social
distancing measure). In later papers we will discuss problems which combine the features of
spatial bags and distance locality where convolutional networks (especially convLSTM) are
clearly useful.

https://paperpile.com/c/zFDKfc/INq1N
https://paperpile.com/c/zFDKfc/H0W72
https://paperpile.com/c/zFDKfc/INq1N
https://paperpile.com/c/zFDKfc/jf2nb

Fig 4: Illustration of a spatial bag with associated time sequences. t labels time and x location, The
Seq2Seq and forecast modes are illustrated and the structure of input data and predictions.

3.2 Using Transformers for Spatial Bags
The deep learning methods use approaches that were largely originally developed for natural

language processing.
Recurrent Neural Networks
RNN explicitly focus on
sequences and pass them
through a common network with
pretty subtle features. RNN are
designed to gather a history
which allows the time
dependence to be remembered
Attention-based methods [25]
are more modern and perhaps
somewhat easier to understand
as attention is a simple idea.

NLP is basically a classification
problem (look up tokens in a
context sensitive dictionary)
whereas (science) tends to be
numerical and so it is not
immediately obvious how to use
attention in technical time series

https://paperpile.com/c/zFDKfc/7nTc

and we describe one possible approach in this paper. There have been a few studies of
transformer architectures for numerical time series such as [26]–[32] but there is not a large
literature.

Attention [12], [33] means that you “learn” structure from other related data and look for patterns
using a simple “dot-product” mechanism discussed later matching structure of different
sequences; there are other approaches to match patterns which is a good topic for future work.
Here we use a simple attention mechanism in an initial decoder but use a recurrent net LSTM
for the encoder as shown in fig. 5b). Such mixtures have been investigated and compared [34],
[35]. We compare the two architectures shown in a) and b) of fig. 5; a pure LSTM used in sec. 2
and a hybrid transformer

Scaled Dot-Product Attention and the Vectors Q K V

The basic item for LSTM and
Transformer is the same; a space
point with a time sequence with each
time in the sequence having a set of
static and dynamic values. In an
LSTM the sequence is “hidden” and
you have to unroll the recurrent
network to see it. However in
transformer the different time values
in a sequence are treated directly
and so each item contains W terms
(W is size of time sequence), Each
term is embedded in an input layer
and then mapped by 3 different
layers into vectors Q (query) K (key)
V . As shown in fig. 6, one matches

terms i and j by calculating Q(i)KT(j) and ranking with a soft-max step. This multiplies the
characteristic vector V(j) of this pattern and the total attention A(i) for item i, is calculated as a
weighted sum over values V(j). There are several different attention “heads” (networks
generating Q K V) in each step and the whole process is repeated in multiple encoder layers.
The result of the encoder step is considered separately for each item (each time in a time
sequence at a given location) and the embedded input of this layer is combined with the
attention as input to the LSTM decode step.

Choosing group of items over which Attention Calculated
In natural language processing, you look for patterns among neighbouring sentences but for
science time series you can have larger regions as spatial bags have no locality. This leads to
many choices as to the space over which attention is calculated as one can’t realistically
consider all items simultaneously. Suppose we have Nloc locations; each with Nseq sequences of

https://paperpile.com/c/zFDKfc/hb6A+HbGB+PoeS+NaiV+Lwua+jJN8+q0KJ
https://paperpile.com/c/zFDKfc/T4Nu+qWMd
https://paperpile.com/c/zFDKfc/USxl+LzYW
https://paperpile.com/c/zFDKfc/USxl+LzYW

length W. Then the space to be searched has size Nloc. Nseq . W which is too large. In COVID-19
example Nloc= 314, Nseq ~ 200 and W up to 13. In the hydrology example in sec. 5, Nloc= 671,
Nseq ~ 7000 and W up to 270. The next subsection describes the 3 search strategies we have
looked at in FFFFWNPF: and depicted in fig. 7. There is

● Temporal search: points in sequence for fixed location
● Spatial search: locations for a fixed position in sequence
● Full search: complete location-sequence space

One will need to sample items randomly as only a small fraction of space is looked at in one
attention step whatever method used. Note that in all cases we used a batch size of 1 as the
attention space was effectively the batch. Actually in the LSTM stage, the different locations in
the attention space were considered separately and the attention search space became the
batch. In the work reported here the attention space (and batch size) was set to Nloc but this is
not required and would not work in some cases with large values of Nloc. Even in examples
considered here, the search space can get so large that one needs to address memory size
issues and we describe this in sec. 3.3. Note the encode step of the transformer is many matrix
multiplications and gets excellent GPU performance and typically LSTM decoder would be a
significant part of the compute time and so the addition of attention is not a major performance
hurdle.

Fig. 7: Three search strategies discussed in paper. N=NA is the number of items considered in
attention search- each labelled by a location and starting time - and each a window of length W.
W=5 in diagram. NA = NB = Nloc here.

An epoch contains Nloc.Nseq sequences each of length W and consisting of static and dynamic
variables characteristic of location. For an LSTM, you would have a batch which consists of NB ~
Nloc sequences. The number of batches in an epoch is approximately Nseq. For a transformer the
batch is currently unwrapped as discussed above and used as the attention space. Memory use
or compute issues could require a different strategy separately considering batch and attention
space.

Note the attention space choice implies different initial shuffling to form batches and also
different prediction stage approaches. For spatial and temporal searches one can keep all
locations at a particular time value together in both forming batches and in calculating
prediction. For the full search the complete set of Nloc.Nseq sequences must be shuffled. In
practice we combined the spatial and temporal search and accumulated the results of these two
attention searches.

3.3 Comments on FFFFWNPF Implementation
Sequence Memory Use: Suppose that one has Nloc locations, Nseq sequences and time windows
of length W. This requires memory of order NlocNseqW which for hydrology example exceeds
CPU memory for W � 10. However the sequences are only needed at the time the sequence is
being used in a batch and so we use “Virtual Windows” where the system is set up with just time
values with predictions calculated for sequences that end at each time value. Then one forms
the sequences inside the deep learning loop dynamically for each batch. This requires care to
be efficient and needs custom Tensorflow training but works well with little overhead. Probably
this approach should always be used for time series.

Attention Search Memory Use: The full search requires matrices of size (NAW)2 and this can
be too large to fit in the GPU memory. As W is chosen for a given scenario, if this limit is seen,
one essentially needs to reduce the number of locations (NA) and this is done (hidden from user)
by breaking matrix into blocks inside the function calculating the scaled dot product attention.
These blocks require tensor slicing which is a little tricky as sliced tensors cannot be assigned in
current tensorflow but appending blocks to a list and using concat achieves this goal. This
approach was used for larger values of W for models that used the mechanism of fig. 7c). In
future work, we can of course look at parallelism to address both memory use and performance.
For W=120 for example, each epoch takes over an hour to calculate on Colab.

Deep Learning Approach: All these results used Tensorflow and Jupyter notebooks but they
can surely use PyTorch or other frameworks. The simplest LSTM can be done with the basic
sequential Keras model with a succession of layers. The Transformer has a more complex
structure that needs Tensorflow’s custom training. We designed a custom monitor that
checkpointed (using Tensorflow’s standard mechanism) weights and monitored the variation of
loss with increasing epoch number. Large increases in loss were rolled back during the training
and at the end of the training, the best checkpointed result was used. The number of rollbacks
increased at end of run when improvement was anyway very small

Real-Time Issues: Often time-series are observed in real-time and need to be responded to
with low latency requiring inference to execute at the edge. This was not relevant for examples
considered here with daily data. However these methods need to be reviewed for real-time
inference scenarios when the large search space that can be used by the transformer can
significantly increase prediction time latency.

Structure of workflow: We can divide data processing for the type of problem considered here
into five stages: pre-notebook; specialized notebook input; generic data pre-processing; training;
visualization. We give details of five steps below

1) The pre-notebook data engineering performs actions specific to a particular domain as,
for example, in forming binned time series from recorded earthquake events.

2) This stage prepares data for the notebook which reads the data (typically csv files) into
a set of numpy arrays. This includes dynamic and static properties as well as metadata
such property and location names.

3) In the important third stage, the notebook performs generic preparation tasks common to
all datasets. This includes normalizing static and dynamic data by taking powers (square
root, cube root, log to reduce standard deviation/mean) and linear transformations so
values lie between 0 and 1. Also one must generate sequences (or prepare the virtual
sequences described above under sequence memory use) and generate predictions
associated with each sequence final time value. The predictions include futures which for
COVID-19 use cases was for two weeks ahead. These cannot be found for sequences
whose endpoint is within two weeks of the final data point; those points are set to NaN.
In general the method accommodates any missing data for predictions but not for the
input sequences where all data must be present. The generic input processing includes
adding of positional space and time encoding for both LSTM and Transformer. We use
simple linear indices for both space and time supplemented by periodic time encoding
which is weekly for the COVID-19 data but annual for hydrology. This periodic structure
corresponds to series such as (cosθ, sinθ) where θ runs from 0 to 2π over the period
length. Note this seems extravagant but it is not and performance of the network is not
significantly impacted by adding either these encoding or by the extra future variables.

4) The next stage is a custom Tensorflow training where we must of course design the
network from a collection of class instances. It is also set up with a monitor that controls
the backup and restores the weights if the optimizer sends the fit into left field and the
loss is significantly increased. We must set the parameters to control fit such as the
search space for the transformer and the usual hyperparameters including number and
size of layers, dropout, epoch, batch, and validation set, The training code must
generate the sequences every batch if virtual windows are used. The long Tensorflow
training runs (up to over an hour per epoch) sometimes fail for Colab system glitches
and jobs are often set up to restart from the backups. Further the weight architecture is
independent of window size W, so large window runs W � 60 can be initialized with
results of faster runs with smaller window size -- typically choosing a stage which was
not fully converged but had a loss that was perhaps 30% above the final value. We use
a simple custom loss function which certainly needs to recognize any missing prediction
data designated by NaN in value. This is easy to test on and as loss function is additive
over predictions it is sufficient to just skip over such points in calculations in the custom
loss function.

5) The last notebook activity is the many post fit visualization and analysis steps where
care is needed to generate accurate efficient predictions.

4. Application to Hydrology Problems

This work was motivated by an NCAR summer school including a video lecture [36] describing
the use of recurrent neural networks in hydrology. There is also a good review [37] of deep
learning in Hydrology with 129 papers. Many of the 129 papers are based on the CAMELS
dataset from NCAR [15] where we focus on one of the most sophisticated analyses by Kratzert
[16], [18]. A summary of this is contained in the resource [38] produced for a summer

https://paperpile.com/c/zFDKfc/N9F3
https://paperpile.com/c/zFDKfc/fvsK0
https://paperpile.com/c/zFDKfc/WpA8
https://paperpile.com/c/zFDKfc/B3Kr+BQSp
https://paperpile.com/c/zFDKfc/qYcz

undergraduate research project [39]. The CAMELS data has 671 easily used locations
(catchments) where 6 observables (rainfall, runoff, etc.) are defined on each location for 20
years. As well as this dynamic data there are 27 static variables for each location. The goal is to
build a single model describing these 671 locations. This can be posed in many ways with
different input and output choices. It can also be formulated as a sequence to sequence model
or as a sequence to forecast model (as Covid and Kratzert did). The loss function can be MSE
or similar or more subtly the Nash–Sutcliffe efficiency NSE normalized by the measured
standard deviation.

In this paper, we are not aiming at science but rather a technology evaluation of LSTM and the
hybrid transformer. So we asked how well these models described the full dataset rather than
using half the dataset to predict the other half as was done in [16], [18]. We looked at the 671
locations and 7031 daily data and windows W from 5 to 120. We did not see any advantages of
large windows for the CAMELS dataset and present results for W=25. Interestingly the
hydrology analysis preferred the spatial and temporal search strategies, (a) and b) in fig. 7,
while COVID-19 analysis hybrid transformer analysis preferred the full search, c) in fig. 7. In
both cases, the hybrid transformer obtained a final loss MSE that was 20% lower than the
LSTM. Further, we found 2 Encoder layers gave good answers with quick convergence and
either 4 (usual choice) or 8 heads per layer were sound. We explored different choices of the
network embedding for Q K V and input data but a simple single layer with SELU activation for
each embedding worked well. The internal representation of the space time points used 128
bits. However this hyperparameter search was not thorough.

The 27 static variables p_mean, pet_mean, aridity, p_seasonality, frac_snow_daily,
high_prec_freq, high_prec_dur, low_prec_freq, low_prec_dur, elev_mean, slope_mean,
area_gages2, forest_frac, lai_max, lai_diff, gvf_max, gvf_diff, soil_depth_pelletier,
soil_depth_statsgo, soil_porosity, soil_conductivity, max_water_content, sand_frac, silt_frac,
clay_frac, carb_rocks_frac, geol_permeability, were used with details given in [40]. The 6
dynamic data with daily values are given in the table below

Table: CAMELS data recorded daily

 Dynamic attribute description unit

 1 prcp(mm/day) daily cumulative precipitation mm/day

 2 srad(W/m2) average short-wave radiation W/m2

 3 tmax(C) daily maximum air temperature C

 4 tmin(C) daily minimum air temperature C

 5 vp(Pa) vapor pressure Pa

 6 QObs(mm/d) Discharge (cubic meters per day/ basin area) mm/day

https://paperpile.com/c/zFDKfc/lCZM
https://paperpile.com/c/zFDKfc/B3Kr+BQSp
https://paperpile.com/c/zFDKfc/ZkzC

All this data was scaled between 0 and 1 while QObs and prcp had the cube root taken before
this scaling to give greater representation quality by increasing scaled standard deviation.

We investigated pure LSTM and hybrid transformer representations of the hydrology data with a
variety of choices for window size W and the different attention mechanisms described in
section 3.2. We did not see significant dependence on W for values ≧ 21 and typical results are
shown in fig. 8 for W = 25. There are a lot of fluctuations in the rainfall (prcp observable) making
figure 8 a) left) hard to interpret and it is shown with an expanded scale in fig. 8 d). As
mentioned already, we obtained the best representations using the stratified search strategies
across spatial or time directions, a) and b) in fig.7.

Fig. 8(a) Results of the hybrid transformer for the first two daily time series prcp and
srad,predicting one day in the future. This had 4 attention heads and 2 encoder layers and used
search strategies a) and b). The left plot is expanded in fig. 8(d). The data in figures 8 a) to d)
are the sum over locations of normalized data with cube root taken for prcp and QObs.

Fig. 8(b) Results of the hybrid transformer for the middle two daily time series tmax and
tmin,predicting one day in the future. This had 4 attention heads and 2 encoder layers and used
search strategies a) and b)

Fig. 8(a) Results of the hybrid transformer for the final two daily time series vp and QObs,
predicting one day in the future. This had 4 attention heads and 2 encoder layers and used
search strategies a) and b). Note a few measurements of QObs are missing and so summed
data is not available for some days in the right plot. The fit does all 671 locations separately and
so the region where the sum is not plotted is in fact well covered in the fit.

Fig. 8(d) Expansion of the plot in fig. 8(a) left with x-axis expanded a factor of 6. We only record
a third of the days as these illustrate what is going on quite well. The other 4 plots for remaining
days are similar

We also applied the hybrid transformer model to the COVID-19 data introduced in sec. 2.
Typical results are shown in figure 9 that not only gives the summed totals as in figs.2, 3, 8 but
also the particular description of data from New York City. Unlike the hydrology data, the full
attention search fig. 7 c) gave the best description.

Fig. 9(a) Results of the hybrid transformer for the COVID-19 infections (left) and fatalities (right)
for a larger sample than that shown in fig. 2. The network had 4 attention heads and 2 encoder
layers and used search strategy c) and a window size of 9. We show variation in predictions
across different samplings of the attention search space. The figure shows sum over
counties/cities of normalized fitted data which is square root of individual counts

Fig. 9(b) Results of the hybrid transformer for the COVID-19 infections (left) and fatalities (right)
in New York City for the fit presented in fig. 9 a). This figure shows true counts

5. Conclusions
Above we have given examples of recurrent networks of the time evolution operator for complex
systems and we are extending this to other areas. We see the mix of networks used above as a
base approach applicable to many problems. Some examples need additional features:
earthquakes (with fault lines) and transportation (road systems) need some variant of graph
networks while mixtures of convolutional and recurrent networks (such as convLSTM) are used
in weather and again earthquakes where the time series features can consist of images. Here
we identify a new problem class -- spatial geometry where unlike spatial bag models, the spatial
locality of the points in the problem is important

We intend to study deep learning based time evolution operators for different complex systems
and identify patterns as to which type of network describes which problem classes and the

amount of data needed to get good results. Hopefully, we will also make research advances in
the best networks to use; this is already seen in the move from recurrent networks to
transformer and reformer architectures but this was largely motivated by sequence to sequence
mapping and not by time series. We suggest more research in multiple or hierarchical time
scales as this is needed in many applications.

We intend to build a benchmark set of time series datasets and reference implementations as
playing the same role for time series that ImageNet ILSRVC and AlexNet played for images.
The different implementations establish best practice or get chosen for different application
areas to either suggest an architecture or an initial network by transfer learning. Interesting
complex systems that we can quickly look at, include virtual tissues [41], [42] and
epidemiology[43] for Covid related applications. Such evolution operators are also seen[3] in
finance, networking, security, monitoring of complex systems from Tokamaks[44] to operating
systems, and environmental science.

MLPerf benchmarks aim to quantitatively study the highest performance hardware and software
systems. However, they also serve as examples of best practice and can help advance a field
by documenting best practices. We intend to combine the open datasets and clean reference
implementations available in MLPerf with documentation and tutorials which will allow MLPerf
benchmarks to encourage the broad community to study these examples and use the ideas in
other applications as well improving on our base reference implementations [45]. This work will
be performed in the MLPerf Science Data which was just set up and is led by Fox and Hey
(Chief Data Scientist at the Rutherford Appleton Laboratory). We will build multiple time series of
the “MLPerf tutorial style” starting with initial projects from Indiana and identifying other
examples from either the working group compilation [3] or identified in the meetings of MLPerf
working groups. We will also look at areas including anomaly/failure detections, device metrics
analysis, troubleshooting, and many IoT related data streams; examples have been compiled in
cybersecurity and industrial operation categories by MLPerf [3].

Acknowledgements
This work is partially supported by the National Science Foundation (NSF) through awards
CIF21 DIBBS 1443054, nanoBIO 1720625, CINES 1835598 and Global Pervasive
Computational Epidemiology 1918626. I thank Lijiang Guo, Gregor von Laszewski,
Saumyadipta Pyne, Xinyuan Huang, Bo Feng, Russell Hofmann, JCS Kadupitiya, and Vikram
Jadhao for great discussions and Niranda Perera for preparing the Hydrology dataset. I am
grateful to Cisco University Research Program Fund grant 2020-220491 for supporting this
research.

Software
A recent FFFFWNPF Google Colab notebook can be found at
https://colab.research.google.com/drive/1dUwrxlUq8G8HHTzImJXmJ9qiUFabdIKf?usp=sharing.
This defines hyperparameters and networks and is open source. The name FFFFWNPF
remembers the name of the optimization package that I developed over 50 years ago and used
in physics data analysis such as [46]. FFFF stands for Fee-fi-fo-fum [47] and WNPF is just Well
Nigh Perfect Fit. The original FFFWNPF suffered the fate of computer cards and retired
electronic stores past their glory days [48] at LBNL. This fate was entirely my fault as I was

https://paperpile.com/c/zFDKfc/Qd8Y8+WIieB
https://paperpile.com/c/zFDKfc/zlcqq
https://paperpile.com/c/zFDKfc/NCyiN
https://paperpile.com/c/zFDKfc/c5Vqj
https://paperpile.com/c/zFDKfc/u9vM
https://paperpile.com/c/zFDKfc/NCyiN
https://paperpile.com/c/zFDKfc/NCyiN
https://colab.research.google.com/drive/1dUwrxlUq8G8HHTzImJXmJ9qiUFabdIKf?usp=sharing
https://paperpile.com/c/zFDKfc/n26s
https://paperpile.com/c/zFDKfc/gFpU
https://paperpile.com/c/zFDKfc/tN5Q

thinking about other things; FFFWNPF was very grateful for example for the extensive work
done on the CDC 6600 and 7600’s at LBNL.

References

[1] P. Mattson, C. Cheng, G. Diamos, C. Coleman, P. Micikevicius, D. Patterson, H. Tang, G.-Y. Wei, P.
Bailis, V. Bittorf, D. Brooks, D. Chen, D. Dutta, U. Gupta, K. Hazelwood, et al., “MLPerf Training
Benchmark,” in Proceedings of Machine Learning and Systems 2020, 2020, pp. 336–349.

[2] “MLPERF benchmark suite for measuring performance of ML software frameworks, ML hardware
accelerators, and ML cloud platforms.” [Online]. Available: https://mlperf.org/. [Accessed:
08-Feb-2019]

[3] X. Huang, G. C. Fox, S. Serebryakov, A. Mohan, P. Morkisz, and D. Dutta, “Benchmarking Deep
Learning for Time Series: Challenges and Directions,” in 2019 IEEE International Conference on Big
Data (Big Data), 2019, pp. 5679–5682 [Online]. Available:
http://dx.doi.org/10.1109/BigData47090.2019.9005496

[4] Yan Liu, “Artificial Intelligence for Smart Transportation Video.” [Online]. Available:
https://slideslive.com/38917699/artificial-intelligence-for-smart-transportation. [Accessed:
08-Aug-2019]

[5] Geoffrey Fox, “Class Presentation: Studying Time Series with Deep Learning.” [Online]. Available:
https://docs.google.com/presentation/d/1ddAsHq-uikjPnomnSE21E0R0y7xBIrLGvaP_b6CM0dw/edit
?usp=sharing. [Accessed: 13-Nov-2020]

[6] Geoffrey Fox, “Video of Studying Time Series for Deep Learning.” [Online]. Available:
https://youtu.be/teXeAdX6_Cg. [Accessed: 13 November, 2020]

[7] Geoffrey Fox, “Deep Learning Based Time Evolution.” [Online]. Available:
http://dsc.soic.indiana.edu/publications/Summary-DeepLearningBasedTimeEvolution.pdf. [Accessed:
08-Jun-2020]

[8] C. Widanage, N. Perera, V. Abeykoon, S. Kamburugamuve, T. A. Kanewala, H. Maithree, P.
Wickramasinghe, A. Uyar, G. Gunduz, and G. Fox, “High Performance Data Engineering
Everywhere,” arXiv [cs.DC], 19-Jul-2020 [Online]. Available: http://arxiv.org/abs/2007.09589

[9] Vibhatha Abeykoon, Niranda Perera, Chathura Widanage, Supun Kamburugamuve, Thejaka Amila
Kanewala, Hasara Maithree, Pulasthi Wickramasinghe, Ahmet Uyar, Geoffrey Fox, “Data
Engineering for HPC with Python,” in SC20 Proceedings, Atlanta [Online]. Available:
https://www.researchgate.net/profile/Geoffrey_Fox/publication/344211401_Data_Engineering_for_H
PC_with_Python/links/5f5c2f3892851c07895fdbce/Data-Engineering-for-HPC-with-Python.pdf

[10] Geoffrey Fox, “FFFFWNPF Time Series Deep Learning Jupyter Notebook.” [Online]. Available:
https://colab.research.google.com/drive/1dUwrxlUq8G8HHTzImJXmJ9qiUFabdIKf?usp=sharing.
[Accessed: 14-Nov-2020]

[11] Copyright 2019 The TensorFlow Authors., “Transformer model for language understanding: Google
Colab Tutorial.” [Online]. Available:
https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/text/transforme
r.ipynb. [Accessed: 13-Nov-2020]

[12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I.
Polosukhin, “Attention Is All You Need,” arXiv [cs.CL], 12-Jun-2017 [Online]. Available:
http://arxiv.org/abs/1706.03762

[13] Geoffrey C. Fox, Gregor von Laszewski, Fugang Wang, Saumyadipta Pyne, “AICov: An Integrative
Deep Learning Framework for COVID-19 Forecasting with Population Covariates,” Arxiv 2010.03757,
Jul. 2020 [Online]. Available: http://dsc.soic.indiana.edu/publications/paper_covid.pdf,
https://arxiv.org/abs/2010.03757

[14] Kratzert, Frederik, “CAMELS Extended Maurer Forcing Data.” [Online]. Available:
https://www.hydroshare.org/resource/17c896843cf940339c3c3496d0c1c077/. [Accessed:
14-Jul-2020]

[15] N. Addor, A. J. Newman, N. Mizukami, and M. P. Clark, “The CAMELS data set:Catchment attributes

http://paperpile.com/b/zFDKfc/dQZNd
http://paperpile.com/b/zFDKfc/dQZNd
http://paperpile.com/b/zFDKfc/dQZNd
http://paperpile.com/b/zFDKfc/dQZNd
http://paperpile.com/b/zFDKfc/dQZNd
http://paperpile.com/b/zFDKfc/dQZNd
http://paperpile.com/b/zFDKfc/dQZNd
http://paperpile.com/b/zFDKfc/NfoaY
http://paperpile.com/b/zFDKfc/NfoaY
https://mlperf.org/
http://paperpile.com/b/zFDKfc/NfoaY
http://paperpile.com/b/zFDKfc/NfoaY
http://paperpile.com/b/zFDKfc/NCyiN
http://paperpile.com/b/zFDKfc/NCyiN
http://paperpile.com/b/zFDKfc/NCyiN
http://paperpile.com/b/zFDKfc/NCyiN
http://paperpile.com/b/zFDKfc/NCyiN
http://dx.doi.org/10.1109/BigData47090.2019.9005496
http://paperpile.com/b/zFDKfc/JhLhE
https://slideslive.com/38917699/artificial-intelligence-for-smart-transportation
http://paperpile.com/b/zFDKfc/JhLhE
http://paperpile.com/b/zFDKfc/JhLhE
http://paperpile.com/b/zFDKfc/Af2Z
https://docs.google.com/presentation/d/1ddAsHq-uikjPnomnSE21E0R0y7xBIrLGvaP_b6CM0dw/edit?usp=sharing
https://docs.google.com/presentation/d/1ddAsHq-uikjPnomnSE21E0R0y7xBIrLGvaP_b6CM0dw/edit?usp=sharing
http://paperpile.com/b/zFDKfc/Af2Z
http://paperpile.com/b/zFDKfc/4PBr
https://youtu.be/teXeAdX6_Cg
http://paperpile.com/b/zFDKfc/4PBr
http://paperpile.com/b/zFDKfc/a9ra
http://dsc.soic.indiana.edu/publications/Summary-DeepLearningBasedTimeEvolution.pdf
http://paperpile.com/b/zFDKfc/a9ra
http://paperpile.com/b/zFDKfc/a9ra
http://paperpile.com/b/zFDKfc/AyDV
http://paperpile.com/b/zFDKfc/AyDV
http://paperpile.com/b/zFDKfc/AyDV
http://paperpile.com/b/zFDKfc/AyDV
http://paperpile.com/b/zFDKfc/AyDV
http://arxiv.org/abs/2007.09589
http://paperpile.com/b/zFDKfc/ln3d
http://paperpile.com/b/zFDKfc/ln3d
http://paperpile.com/b/zFDKfc/ln3d
http://paperpile.com/b/zFDKfc/ln3d
http://paperpile.com/b/zFDKfc/ln3d
https://www.researchgate.net/profile/Geoffrey_Fox/publication/344211401_Data_Engineering_for_HPC_with_Python/links/5f5c2f3892851c07895fdbce/Data-Engineering-for-HPC-with-Python.pdf
https://www.researchgate.net/profile/Geoffrey_Fox/publication/344211401_Data_Engineering_for_HPC_with_Python/links/5f5c2f3892851c07895fdbce/Data-Engineering-for-HPC-with-Python.pdf
http://paperpile.com/b/zFDKfc/hAY2
https://colab.research.google.com/drive/1dUwrxlUq8G8HHTzImJXmJ9qiUFabdIKf?usp=sharing
http://paperpile.com/b/zFDKfc/hAY2
http://paperpile.com/b/zFDKfc/hAY2
http://paperpile.com/b/zFDKfc/SyJM
http://paperpile.com/b/zFDKfc/SyJM
https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/text/transformer.ipynb
https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/text/transformer.ipynb
http://paperpile.com/b/zFDKfc/SyJM
http://paperpile.com/b/zFDKfc/qWMd
http://paperpile.com/b/zFDKfc/qWMd
http://paperpile.com/b/zFDKfc/qWMd
http://paperpile.com/b/zFDKfc/qWMd
http://arxiv.org/abs/1706.03762
http://paperpile.com/b/zFDKfc/lZIa
http://paperpile.com/b/zFDKfc/lZIa
http://paperpile.com/b/zFDKfc/lZIa
http://dsc.soic.indiana.edu/publications/paper_covid.pdf,%20https://arxiv.org/abs/2010.03757
http://dsc.soic.indiana.edu/publications/paper_covid.pdf,%20https://arxiv.org/abs/2010.03757
http://paperpile.com/b/zFDKfc/XqEo
https://www.hydroshare.org/resource/17c896843cf940339c3c3496d0c1c077/
http://paperpile.com/b/zFDKfc/XqEo
http://paperpile.com/b/zFDKfc/XqEo
http://paperpile.com/b/zFDKfc/WpA8

and meteorology for large-sample studies,” Hydrol. Earth Syst. Sci., vol. 21, no. 10, p. 21, Oct. 2017
[Online]. Available: https://ueaeprints.uea.ac.uk/id/eprint/65434/. [Accessed: 05-Jul-2020]

[16] Frederik Kratzert, “Catchment-Aware LSTMs for Regional Rainfall-Runoff Modeling GitHub.” [Online].
Available: https://github.com/kratzert/ealstm_regional_modeling. [Accessed: 14-Jul-2020]

[17] A. J. Newman, M. P. Clark, K. Sampson, A. Wood, L. E. Hay, A. Bock, R. J. Viger, D. Blodgett, L.
Brekke, J. R. Arnold, and Others, “Development of a large-sample watershed-scale
hydrometeorological data set for the contiguous USA: data set characteristics and assessment of
regional variability in hydrologic model performance,” Hydrol. Earth Syst. Sci., vol. 19, no. 1, p. 209,
2015 [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.668.2612&rep=rep1&type=pdf

[18] F. Kratzert, D. Klotz, G. Shalev, G. Klambauer, S. Hochreiter, and G. Nearing, “Towards learning
universal, regional, and local hydrological behaviors via machine learning applied to large-sample
datasets,” Hydrology & Earth System Sciences, vol. 23, no. 12, 2019 [Online]. Available:
https://arxiv.org/abs/1907.08456

[19] JCS Kadupitiya, Geoffrey C. Fox, Vikram Jadhao, “GitHub repository for Simulating Molecular
Dynamics with Large Timesteps using Recurrent Neural Networks.” [Online]. Available:
https://github.com/softmaterialslab/RNN-MD. [Accessed: 01-May-2020]

[20] J. C. S. Kadupitiya, G. C. Fox, and V. Jadhao, “Simulating Molecular Dynamics with Large Timesteps
using Recurrent Neural Networks,” arXiv [physics.comp-ph], 12-Apr-2020 [Online]. Available:
http://arxiv.org/abs/2004.06493

[21] J. C. S. Kadupitiya, G. Fox, and V. Jadhao, “Recurrent Neural Networks Based Integrators for
Molecular Dynamics Simulations,” in APS March Meeting 2020, 2020 [Online]. Available:
http://meetings.aps.org/Meeting/MAR20/Session/L45.2. [Accessed: 23-Feb-2020]

[22] Robert Marsland and Pankaj Mehta, “Data-driven modeling reveals a universal dynamic underlying
the COVID-19 pandemic under social distancing,” arXiv [q-bio.PE], 21-Apr-2020 [Online]. Available:
http://arxiv.org/abs/2004.10666

[23] Luca Magri and Nguyen Anh Khoa Doan, “First-principles Machine Learning for COVID-19
Modeling,” Siam News, vol. 53, no. 5, Jun. 2020 [Online]. Available:
https://sinews.siam.org/Details-Page/first-principles-machine-learning-for-covid-19-modeling

[24] A. Adiga, L. Wang, A. Sadilek, A. Tendulkar, S. Venkatramanan, A. Vullikanti, G. Aggarwal, A.
Talekar, X. Ben, J. Chen, B. Lewis, S. Swarup, M. Tambe, and M. Marathe, “Interplay of global
multi-scale human mobility, social distancing, government interventions, and COVID-19 dynamics,”
medRxiv - Public and Global Health, 07-Jun-2020 [Online]. Available:
http://dx.doi.org/10.1101/2020.06.05.20123760

[25] A. Galassi, M. Lippi, and P. Torroni, “Attention in Natural Language Processing,” arXiv [cs.CL],
04-Feb-2019 [Online]. Available: http://arxiv.org/abs/1902.02181

[26] D. A. Kaji, J. R. Zech, J. S. Kim, S. K. Cho, N. S. Dangayach, A. B. Costa, and E. K. Oermann, “An
attention based deep learning model of clinical events in the intensive care unit,” PLoS One, vol. 14,
no. 2, p. e0211057, Feb. 2019 [Online]. Available: http://dx.doi.org/10.1371/journal.pone.0211057

[27] T. Gangopadhyay, S. Y. Tan, Z. Jiang, R. Meng, and S. Sarkar, “Spatiotemporal Attention for
Multivariate Time Series Prediction and Interpretation,” arXiv [cs.LG], 11-Aug-2020 [Online].
Available: http://arxiv.org/abs/2008.04882

[28] N. Xu, Y. Shen, and Y. Zhu, “Attention-Based Hierarchical Recurrent Neural Network for Phenotype
Classification,” in Advances in Knowledge Discovery and Data Mining, 2019, pp. 465–476 [Online].
Available: http://dx.doi.org/10.1007/978-3-030-16148-4_36

[29] R. S. Kodialam, R. Boiarsky, and D. Sontag, “Deep Contextual Clinical Prediction with Reverse
Distillation,” arXiv [cs.LG], 10-Jul-2020 [Online]. Available: http://arxiv.org/abs/2007.05611

[30] J. Gao, X. Wang, Y. Wang, Z. Yang, J. Gao, J. Wang, W. Tang, and X. Xie, “CAMP: Co-Attention
Memory Networks for Diagnosis Prediction in Healthcare,” in 2019 IEEE International Conference on
Data Mining (ICDM), 2019, pp. 1036–1041 [Online]. Available:
http://dx.doi.org/10.1109/ICDM.2019.00120

[31] R. Sen, H.-F. Yu, and I. Dhillon, “Think Globally, Act Locally: A Deep Neural Network Approach to
High-Dimensional Time Series Forecasting,” arXiv [stat.ML], 09-May-2019 [Online]. Available:
http://arxiv.org/abs/1905.03806

http://paperpile.com/b/zFDKfc/WpA8
http://paperpile.com/b/zFDKfc/WpA8
http://paperpile.com/b/zFDKfc/WpA8
http://paperpile.com/b/zFDKfc/WpA8
https://ueaeprints.uea.ac.uk/id/eprint/65434/
http://paperpile.com/b/zFDKfc/WpA8
http://paperpile.com/b/zFDKfc/BQSp
http://paperpile.com/b/zFDKfc/BQSp
https://github.com/kratzert/ealstm_regional_modeling
http://paperpile.com/b/zFDKfc/BQSp
http://paperpile.com/b/zFDKfc/TuAm
http://paperpile.com/b/zFDKfc/TuAm
http://paperpile.com/b/zFDKfc/TuAm
http://paperpile.com/b/zFDKfc/TuAm
http://paperpile.com/b/zFDKfc/TuAm
http://paperpile.com/b/zFDKfc/TuAm
http://paperpile.com/b/zFDKfc/TuAm
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.668.2612&rep=rep1&type=pdf
http://paperpile.com/b/zFDKfc/B3Kr
http://paperpile.com/b/zFDKfc/B3Kr
http://paperpile.com/b/zFDKfc/B3Kr
http://paperpile.com/b/zFDKfc/B3Kr
http://paperpile.com/b/zFDKfc/B3Kr
https://arxiv.org/abs/1907.08456
http://paperpile.com/b/zFDKfc/Q37hG
http://paperpile.com/b/zFDKfc/Q37hG
https://github.com/softmaterialslab/RNN-MD
http://paperpile.com/b/zFDKfc/Q37hG
http://paperpile.com/b/zFDKfc/43Jim
http://paperpile.com/b/zFDKfc/43Jim
http://paperpile.com/b/zFDKfc/43Jim
http://paperpile.com/b/zFDKfc/43Jim
http://arxiv.org/abs/2004.06493
http://paperpile.com/b/zFDKfc/2AnL3
http://paperpile.com/b/zFDKfc/2AnL3
http://paperpile.com/b/zFDKfc/2AnL3
http://paperpile.com/b/zFDKfc/2AnL3
http://meetings.aps.org/Meeting/MAR20/Session/L45.2
http://paperpile.com/b/zFDKfc/2AnL3
http://paperpile.com/b/zFDKfc/INq1N
http://paperpile.com/b/zFDKfc/INq1N
http://paperpile.com/b/zFDKfc/INq1N
http://paperpile.com/b/zFDKfc/INq1N
http://arxiv.org/abs/2004.10666
http://paperpile.com/b/zFDKfc/H0W72
http://paperpile.com/b/zFDKfc/H0W72
http://paperpile.com/b/zFDKfc/H0W72
http://paperpile.com/b/zFDKfc/H0W72
https://sinews.siam.org/Details-Page/first-principles-machine-learning-for-covid-19-modeling
http://paperpile.com/b/zFDKfc/jf2nb
http://paperpile.com/b/zFDKfc/jf2nb
http://paperpile.com/b/zFDKfc/jf2nb
http://paperpile.com/b/zFDKfc/jf2nb
http://paperpile.com/b/zFDKfc/jf2nb
http://dx.doi.org/10.1101/2020.06.05.20123760
http://paperpile.com/b/zFDKfc/7nTc
http://paperpile.com/b/zFDKfc/7nTc
http://paperpile.com/b/zFDKfc/7nTc
http://paperpile.com/b/zFDKfc/7nTc
http://arxiv.org/abs/1902.02181
http://paperpile.com/b/zFDKfc/hb6A
http://paperpile.com/b/zFDKfc/hb6A
http://paperpile.com/b/zFDKfc/hb6A
http://paperpile.com/b/zFDKfc/hb6A
http://paperpile.com/b/zFDKfc/hb6A
http://dx.doi.org/10.1371/journal.pone.0211057
http://paperpile.com/b/zFDKfc/HbGB
http://paperpile.com/b/zFDKfc/HbGB
http://paperpile.com/b/zFDKfc/HbGB
http://paperpile.com/b/zFDKfc/HbGB
http://paperpile.com/b/zFDKfc/HbGB
http://arxiv.org/abs/2008.04882
http://paperpile.com/b/zFDKfc/PoeS
http://paperpile.com/b/zFDKfc/PoeS
http://paperpile.com/b/zFDKfc/PoeS
http://paperpile.com/b/zFDKfc/PoeS
http://paperpile.com/b/zFDKfc/PoeS
http://dx.doi.org/10.1007/978-3-030-16148-4_36
http://paperpile.com/b/zFDKfc/NaiV
http://paperpile.com/b/zFDKfc/NaiV
http://paperpile.com/b/zFDKfc/NaiV
http://paperpile.com/b/zFDKfc/NaiV
http://arxiv.org/abs/2007.05611
http://paperpile.com/b/zFDKfc/Lwua
http://paperpile.com/b/zFDKfc/Lwua
http://paperpile.com/b/zFDKfc/Lwua
http://paperpile.com/b/zFDKfc/Lwua
http://paperpile.com/b/zFDKfc/Lwua
http://dx.doi.org/10.1109/ICDM.2019.00120
http://paperpile.com/b/zFDKfc/jJN8
http://paperpile.com/b/zFDKfc/jJN8
http://paperpile.com/b/zFDKfc/jJN8
http://paperpile.com/b/zFDKfc/jJN8
http://arxiv.org/abs/1905.03806

[32] H. Song, D. Rajan, J. J. Thiagarajan, and A. Spanias, “Attend and diagnose: Clinical time series
analysis using attention models,” in Thirty-second AAAI conference on artificial intelligence, 2018
[Online]. Available: https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewPaper/16325

[33] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. U. Kaiser, and I.
Polosukhin, “Attention is All you Need,” in Advances in Neural Information Processing Systems,
2017, vol. 30, pp. 5998–6008 [Online]. Available:
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[34] A. Zeyer, P. Bahar, K. Irie, R. Schlüter, and H. Ney, “A Comparison of Transformer and LSTM
Encoder Decoder Models for ASR,” in 2019 IEEE Automatic Speech Recognition and Understanding
Workshop (ASRU), 2019, pp. 8–15 [Online]. Available:
http://dx.doi.org/10.1109/ASRU46091.2019.9004025

[35] Z. Zeng, V. T. Pham, H. Xu, Y. Khassanov, E. S. Chng, C. Ni, and B. Ma, “Leveraging Text Data
Using Hybrid Transformer-LSTM Based End-to-End ASR in Transfer Learning,” arXiv [eess.AS],
21-May-2020 [Online]. Available: http://arxiv.org/abs/2005.10407

[36] Chaopeng Shen, Penn State University, “D2 2020 AI4ESS Summer School: Recurrent Neural
Networks and LSTMs.” [Online]. Available: https://www.youtube.com/watch?v=vz11tUgoDZc.
[Accessed: 01-Jul-2020]

[37] M. A. Sit, B. Z. Demiray, Z. Xiang, G. Ewing, Y. Sermet, and I. Demir, “A Comprehensive Review of
Deep Learning Applications in Hydrology and Water Resources,” 2020 [Online]. Available:
https://eartharxiv.org/xs36g/

[38] Fugang Wang, “LATEST Short demo-LSTM-Tutorial.ipynb Hydrology on CAMELS Notebook.”
[Online]. Available:
https://colab.research.google.com/drive/1MePoMs1mNmsiPMxUi2RxExgVQKCzhM17?usp=sharing.
[Accessed: August 1,. 2020]

[39] Geoffrey Fox, “Hydrology AIHEC REU Page for summer research 2020.” [Online]. Available:
https://docs.google.com/document/d/1gC7jyhfGjYihZhn8AF-4qhquJlQYUd97sqXrr7FPZfs/edit?usp=s
haring. [Accessed: 01-Jul-2020]

[40] NCAR, “CAMELS: CATCHMENT ATTRIBUTES AND METEOROLOGY FOR LARGE-SAMPLE
STUDIES - DATASET DOWNLOADS.” [Online]. Available:
https://ral.ucar.edu/solutions/products/camels. [Accessed: 17-Nov-2020]

[41] T. J. Sego, J. O. Aponte-Serrano, J. F. Gianlupi, S. Heaps, K. Breithaupt, L. Brusch, J. M. Osborne,
E. M. Quardokus, and J. A. Glazier, “A Modular Framework for Multiscale Spatial Modeling of Viral
Infection and Immune Response in Epithelial Tissue,” BioRxiv, 2020 [Online]. Available:
https://www.biorxiv.org/content/10.1101/2020.04.27.064139v2.abstract

[42] Yafei Wang, Gary An, Andrew Becker, Chase Cockrell, Nicholson Collier, Morgan Craig, Courtney L.
Davis, James Faeder, Ashlee N. Ford Versypt, Juliano F. Gianlupi, James A. Glazier, Randy Heiland,
Thomas Hillen, Mohammad Aminul Islam, Adrianne Jenner, Bing Liu, Penelope A Morel, Aarthi
Narayanan, Jonathan Ozik, Padmini Rangamani, Jason Edward Shoemaker, Amber M. Smith, Paul
Macklin, “Rapid community-driven development of a SARS-CoV-2 tissue simulator,” BioRxiv, 2020
[Online]. Available: https://www.biorxiv.org/content/10.1101/2020.04.02.019075v2.abstract

[43] D. Machi, P. Bhattacharya, S. Hoops, J. Chen, H. Mortveit, S. Venkatramanan, B. Lewis, M. Wilson,
A. Fadikar, T. Maiden, C. L. Barrett, and M. V. Marathe, “Scalable Epidemiological Workflows to
Support COVID-19 Planning and Response,” May 2020.

[44] J. Kates-Harbeck, A. Svyatkovskiy, and W. Tang, “Predicting disruptive instabilities in controlled
fusion plasmas through deep learning,” Nature, vol. 568, no. 7753, pp. 526–531, Apr. 2019 [Online].
Available: https://doi.org/10.1038/s41586-019-1116-4

[45] G. Fox, “SciDatBench AI for Science Benchmark Activity working with MLPerf.” [Online]. Available:
https://github.com/DSC-SPIDAL/SciDatBench/. [Accessed: 01-Aug-2020]

[46] Geoffrey Fox, “Veni, Vidi, Vici Regge Theory; Comments Nucl.Part.Phys. 3 (1969) 190-197. (journal
disappeared).” [Online]. Available:
https://www.dsc.soic.indiana.edu/sites/default/files/Veni%2C%20Vidi%2C%20Vici%20Regge%20The
ory.pdf. [Accessed: 17-Nov-2020]

[47] “Wikipedia Fee-fi-fo-fum.” [Online]. Available: https://en.wikipedia.org/wiki/Fee-fi-fo-fum. [Accessed:
17-Nov-2020]

http://paperpile.com/b/zFDKfc/q0KJ
http://paperpile.com/b/zFDKfc/q0KJ
http://paperpile.com/b/zFDKfc/q0KJ
http://paperpile.com/b/zFDKfc/q0KJ
http://paperpile.com/b/zFDKfc/q0KJ
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewPaper/16325
http://paperpile.com/b/zFDKfc/T4Nu
http://paperpile.com/b/zFDKfc/T4Nu
http://paperpile.com/b/zFDKfc/T4Nu
http://paperpile.com/b/zFDKfc/T4Nu
http://paperpile.com/b/zFDKfc/T4Nu
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://paperpile.com/b/zFDKfc/USxl
http://paperpile.com/b/zFDKfc/USxl
http://paperpile.com/b/zFDKfc/USxl
http://paperpile.com/b/zFDKfc/USxl
http://paperpile.com/b/zFDKfc/USxl
http://dx.doi.org/10.1109/ASRU46091.2019.9004025
http://paperpile.com/b/zFDKfc/LzYW
http://paperpile.com/b/zFDKfc/LzYW
http://paperpile.com/b/zFDKfc/LzYW
http://paperpile.com/b/zFDKfc/LzYW
http://paperpile.com/b/zFDKfc/LzYW
http://arxiv.org/abs/2005.10407
http://paperpile.com/b/zFDKfc/N9F3
http://paperpile.com/b/zFDKfc/N9F3
https://www.youtube.com/watch?v=vz11tUgoDZc
http://paperpile.com/b/zFDKfc/N9F3
http://paperpile.com/b/zFDKfc/N9F3
http://paperpile.com/b/zFDKfc/fvsK0
http://paperpile.com/b/zFDKfc/fvsK0
https://eartharxiv.org/xs36g/
http://paperpile.com/b/zFDKfc/qYcz
http://paperpile.com/b/zFDKfc/qYcz
https://colab.research.google.com/drive/1MePoMs1mNmsiPMxUi2RxExgVQKCzhM17?usp=sharing
http://paperpile.com/b/zFDKfc/qYcz
http://paperpile.com/b/zFDKfc/qYcz
http://paperpile.com/b/zFDKfc/lCZM
https://docs.google.com/document/d/1gC7jyhfGjYihZhn8AF-4qhquJlQYUd97sqXrr7FPZfs/edit?usp=sharing
https://docs.google.com/document/d/1gC7jyhfGjYihZhn8AF-4qhquJlQYUd97sqXrr7FPZfs/edit?usp=sharing
http://paperpile.com/b/zFDKfc/lCZM
http://paperpile.com/b/zFDKfc/ZkzC
http://paperpile.com/b/zFDKfc/ZkzC
https://ral.ucar.edu/solutions/products/camels
http://paperpile.com/b/zFDKfc/ZkzC
http://paperpile.com/b/zFDKfc/Qd8Y8
http://paperpile.com/b/zFDKfc/Qd8Y8
http://paperpile.com/b/zFDKfc/Qd8Y8
http://paperpile.com/b/zFDKfc/Qd8Y8
http://paperpile.com/b/zFDKfc/Qd8Y8
https://www.biorxiv.org/content/10.1101/2020.04.27.064139v2.abstract
http://paperpile.com/b/zFDKfc/WIieB
http://paperpile.com/b/zFDKfc/WIieB
http://paperpile.com/b/zFDKfc/WIieB
http://paperpile.com/b/zFDKfc/WIieB
http://paperpile.com/b/zFDKfc/WIieB
http://paperpile.com/b/zFDKfc/WIieB
http://paperpile.com/b/zFDKfc/WIieB
http://paperpile.com/b/zFDKfc/WIieB
https://www.biorxiv.org/content/10.1101/2020.04.02.019075v2.abstract
http://paperpile.com/b/zFDKfc/zlcqq
http://paperpile.com/b/zFDKfc/zlcqq
http://paperpile.com/b/zFDKfc/zlcqq
http://paperpile.com/b/zFDKfc/c5Vqj
http://paperpile.com/b/zFDKfc/c5Vqj
http://paperpile.com/b/zFDKfc/c5Vqj
http://paperpile.com/b/zFDKfc/c5Vqj
http://paperpile.com/b/zFDKfc/c5Vqj
https://doi.org/10.1038/s41586-019-1116-4
http://paperpile.com/b/zFDKfc/u9vM
https://github.com/DSC-SPIDAL/SciDatBench/
http://paperpile.com/b/zFDKfc/u9vM
http://paperpile.com/b/zFDKfc/n26s
http://paperpile.com/b/zFDKfc/n26s
https://www.dsc.soic.indiana.edu/sites/default/files/Veni%2C%20Vidi%2C%20Vici%20Regge%20Theory.pdf
https://www.dsc.soic.indiana.edu/sites/default/files/Veni%2C%20Vidi%2C%20Vici%20Regge%20Theory.pdf
http://paperpile.com/b/zFDKfc/n26s
http://paperpile.com/b/zFDKfc/gFpU
https://en.wikipedia.org/wiki/Fee-fi-fo-fum
http://paperpile.com/b/zFDKfc/gFpU
http://paperpile.com/b/zFDKfc/gFpU

[48] “IBM 1360 Chip Store.” [Online]. Available: https://en.wikipedia.org/wiki/IBM_1360

http://paperpile.com/b/zFDKfc/tN5Q
https://en.wikipedia.org/wiki/IBM_1360

